

VOCAL Technologies, Ltd. Page 1 of 12 Proprietary and Confidential

Whitepaper:
Design and Implementation of

Custom Cryptosystems

Document #W930_002

Aug 26, 2008

© Copyright 2008 VOCAL Technologies, Ltd. All written and illustrative text contained within this
document are the property of VOCAL Technologies, Ltd., 90A John Muir Drive, Amherst, New York
14228, unless otherwise stated. No unauthorized use, whether in its direct form or reprint, is permitted
without the expressed written approval of the corresponding officer at VOCAL Technologies, Ltd.

Techniques, designs, algorithms and implementations described contained herein are included in one or
more US patents, patent applications and/or provisional patents submitted by VOCAL Technologies, Ltd.

All pages are marked proprietary and confidential and therefore relate directly to assets covered under non-
disclosure.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 2 of 12

 Table of Contents Page

1 Introduction.. 3
2 Caveats and Warnings ... 4
3 Attack Vectors ... 5
4 General Observations... 6

4.1 Always Authenticate ... 6
4.2 Be Aware of Factory Bootstrap Constraints ... 7
4.3 Be Aware of Shutdown Constraints.. 7
4.4 Have the Right Hardware.. 7
4.5 The Rule of Least Exposure.. 8
4.6 System Self Test.. 8

5 Data Layer Design ... 9
5.1 Select Primitives.. 9
5.2 Be Aware of Startup Constraints .. 9

6 Keying Layer Design ... 10
6.1 Identify Isolated Components and Interfaces.. 10
6.2 Select Primitives.. 10
6.3 Select a Key Transfer Mechanism .. 10
6.4 Protect Configuration Data ... 11

7 Conclusion ... 12

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 3 of 12

1 Introduction

This white paper examines some of our experience in the cryptography field, in particular the creation of
custom cryptographic systems for custom applications. We focus on easy-to-overlook issues and critical
aspects of custom cryptosystem design, with an emphasis on constraints found in embedded systems.

We have found it convenient to separate cryptosystem design and implementation into two distinct sets of
operations. The first is the bulk data transport, which uses keys to secure underlying data. The second is
the keying mechanism, which provides keys to the bulk data transport. This separation of duties helps limit
the scope of each, and fits well with the requirements of most cryptographically protected systems.

For consumer applications, the boundary may serve only as a well-defined interface point. For high
security and governmental applications, it may be mandatory for key generation and transfer to reside on an
external device. For military security systems, the key generation and transfer mechanisms must always be
separated from the data layer.

For each part of the system, different design processes may be used. This white paper will cover some of
the more common issues and problems encountered as part of the design process.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 4 of 12

2 Caveats and Warnings

Selection of proper primitives for your application is by far the most important decision to make, and
selection should be done early on in the design process to allow the security implications to be discovered
and understood. There are vast bodies of literature describing cryptographic primitives and algorithms; we
recommend investigating widely deployed systems similar to yours to determine which primitives might be
suitable for your application. Some of the attacks and security analysis for the other system may also
impact your design decisions.

It goes without saying that you should not attempt to design or construct your own low level cryptography
primitives. We say it anyway: use only analyzed, well-understood and widely recognized primitives. If
you must modify a primitive, do so with full understanding of the risks involved and full peer review and
discussion. Even seemingly trivial changes can compromise your system.

A less-well-recognized implication of this concerns random number generators. Much as you should not
attempt to build your own cryptographic primitives, you should never attempt to build your own PRNG for
use in a cryptographic system. Many cryptographic systems rely on hard, cryptographic grade PRNGs for
proper operation. Use of a poor PRNG can compromise utterly or or greatly reduce the required search
space for cryptographic keys.

For secured hardware, the data layer may need to be protected to prevent extraction of key material.
Physical access controls are a critical part of most system designs, but are beyond the scope of this white
paper.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 5 of 12

3 Attack Vectors

This list of attack vectors is intended to describe only general classes of attacks that any cryptographic
system must be resistant to:

• Replay attacks - can previously recorded data be played back into the system to cause damage?
Note that even if the data in the recording is unknown, this can still cause damage, for example by
replaying control messages or any other data that lacks timestamp checks.

• Modification attacks - change an unknown message into another unknown message. This can be
particularly damaging if some aspect of the message can be deduced via other means; for example
if a seldom used field in a known location is almost always zero, changing it to 1 to affect the
receiving system is a trivial operation if the data is not integrity checked.

• Spoofing attacks - make it look like data is coming from the wrong location.

• Denial of service attacks - prevent valid data from reaching its destination, typically through a
protocol flaw.

• Precomputation attacks - precompute and archive some portion of the algorithm to greatly reduce
the search space or make a timing-based attacks possible.

• Direct/brute force attacks - is your keyspace large enough to make brute force attacks infeasible?
Does your implementation preserve all of the keyspace? Even a 128 bit AES primitive can be
brute forced if only half of the keyspace need be searched.

• Infrastructure attacks - if aspects of your system rely on other infrastructure to operate correctly,
attacks against that infrastructure may compromise or expose that system. One example might be
global timestamps; if the timestamp synchronization messages can be hijacked and manipulated,
many attack vectors become possible. By controlling the timestamps, an attacker may open
windows for replay attacks, may invalidate keys causing DOS, or even cause key material to be
used outside its appropriate lifetime.

For each of these major classes of attacks, there may be many more specific attacks that are relevant to
your system. All of these, and even attacks that are only marginally relevant to your current design, should
be considered for any part of your cryptosystem. A detailed database or document that lists each attack
vector and the results of attack analysis should be kept current at all times, with updates any time a change
must be made to the design.

Analyzing the impact of all design changes for relevant attacks is time consuming, which makes it all the
more critical that the design be completed early in the project lifetime.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 6 of 12

4 General Observations

Practical security can almost never be perfect; while certain aspects of the system may be provably secure,
there is almost invariably some aspect of the system which is vulnerable to attack. The goal should not be
to provide provable perfect security for the entire system; the goal should instead be to make all known
attacks sufficiently difficult as to be infeasible for the lifetime of the system.

With the speed of advancement of modern technology, this can require difficult engineering tradeoffs to be
made. What is the estimated lifetime of the system? How long should secured data remain secured after
lifetime end? Will future products require compatibility, extending the effective lifetime of the
cryptosystem?

Extrapolating Moore's Law and the impact of cryptographic research, how secure will the cryptosystem be
in ten years, or twenty years, or thirty years? How will the system fare against an attacker with a billion
times the processing power and storage available today? These questions can never be answered with
certainty, but so long as the security of the primitives remains mostly intact they can be addressed. The
results should be a part of the overall security analysis, as they will provide a minimum upper bound on the
required key lengths.

You can't just focus on one particular aspect of the system and declare the system secure; the security
profile of the entire system must be taken into account. Any weak link can compromise the system. Even
the interaction of the system with users should be well understood; with modern cryptographic systems,
social engineering and attacks against the physical hardware are often far more effective than algorithmic
attacks. Your design should be aware of such attacks, even if the best you can do is to only slightly reduce
the attack window.

The following sections contain some general rules of thumb and things to consider when designing and
implementing a specific system.

4.1 Always Authenticate

Authentication and integrity check of data should be considered mandatory for any cryptosystem and
should be applied to data at all levels. A large number of attack vectors exist that exploit weaknesses in
unauthenticated cryptosystems, including spoofing, modification, and replay attacks.

An integrity check serves only to guarantee that the data sent by the encrypting party was decrypted
properly without error or modification in transit. Depending on which headers are part of the integrity
check, this may also verify some aspect of the sender. A good integrity check can validate both encrypted
data and unencrypted data (such as packet headers) without risk of data or key exposure.

Authentication serves to validate that the message was encrypted by a known specific party. The party
identifier may be as trivial as a well-known static IP address, or may be a proper cryptographic token such
as an RSA public key.

In most systems, both integrity check and authentication are performed simultaneously by the same
algorithm. A good example of this would be the CCM mode of cipher operation used in the 802.11
specification; the MAC address of the ethernet interface serves as the unique party identifier, and is
included in the MIC calculation which validates message integrity.

Note that both integrity check and authentication rely on the security of key material at some level; should

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 7 of 12

the key material be compromised, an attacker may modify, create, or spoof any desired message.

4.2 Be Aware of Factory Bootstrap Constraints

If your cryptosystem is stateless, then all key material and public tokens must be provided to it on startup;
however virtually no cryptosystem is truly stateless. It is desirable in nearly all scenarios for even a
stateless system to have a unique ID by which to identify and authenticate itself. That unique ID may need
to be provided during factory production, or it may be created during first boot of the system. it may even
be generated by the system if a suitable hard random number generator is available.

Sometimes hardware unique IDs such as ethernet mac address can be used as a unique ID, but one must be
careful not to use exported material as a random number seed for key generation.

4.3 Be Aware of Shutdown Constraints

While startup conditions are almost always well understood, shutdown conditions are much less so. All
devices are subject to spontaneous abnormal power-down, and the design of your cryptosystem should be
such that abnormal power-down does not compromise the integrity of the cryptosystem. While an obvious
statement, this can often have subtle consequences based on the selection of cryptographic primitives.

One simple example would be a data layer using counter-mode encryption that is expected to retain its keys
across boots or until rekeyed. The use of counter mode requires that no counter be used twice for a given
key. One way to guarantee this is to keep an up-to-date record of the last used counter in persistent storage.

Depending on the type of persistent storage, this may not be possible. Flash memory has a limited number
of write cycles, and may simply take too much time to use for every counter value. One possible solution
is to pre-allocate blocks of counters from the overall counter range, such that no two blocks may be
reused. On reboot of the system, always allocate a new block to guarantee that reuse will not occur.

4.4 Have the Right Hardware

Three primitive pieces of hardware which are generally useful for cryptographic applications are:

 1) persistent storage
 2) strong random number generation
 3) battery backed system clock

All too often, embedded crypto devices are designed without software in mind, leaving the keying layer
with clumsy flash-based persistent storage and no strong entropy source onboard. Battery backed time-of-
day clocks are also often ignored, as they add extra expense.

Note that the data layer typically only needs item 1, persistent storage. This may be needed to track
counters across boots or even remember loaded keys. The data layer may also require system clock
operation to expire keys with a limited lifetime, though this is less common in consumer applications.

Strong random number generation is always useful, but much more critical for key generation applications.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 8 of 12

4.5 The Rule of Least Exposure

With today's software, operating system compromise may be more likely than cryptosystem compromise.
While no design can withstand dedicated scrutiny by an attacker with complete access to a device, any time
bought resisting system analysis improves the odds of intrusion detection and blacklisting of the
compromised system.

To limit exposure in such a scenario, use and copying of cryptographic material should be limited to a
small, local area. Unused memory and disk storage should be actively cleared, not just orphaned; wrapped
keys should be stored when possible, and only unwrapped when used. Paging to disk should be understood
if applicable, as well as system debug facilities that may be used against the system should the operating
system be compromised.

4.6 System Self Test

System self-test at startup and at periodic intervals may be required as per specification, or may be
desirable for other reasons. Detection of system hardware and software anomalies is the most obvious use
of such testing; implemented properly it may also serve to detect tampering and other types of attacks.

An analysis of the benefits of a system self test should be included in the design documentation.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 9 of 12

5 Data Layer Design

This layer is a consumer of key material. Its purpose is to encrypt and decrypt data as that data passes
through the system. A fundamental part of this layer should also be to authenticate decrypted data and
verify message integrity; in our opinion, no cryptosystem is complete without message integrity checks
and tamper detection.

The data layer typically relies on the security of the keying mechanism to perform its function. So long as
there are no fundamental design flaws (including unanticipated attack vectors) and the data layer is
properly implemented, the security of the layer should be as strong as the keys it uses.

Once you have a thorough understanding of the responsibilities of the data layer, you can begin designing
this part of the system. This section does not attempt to detail all parts of the data layer design, but rather
focuses on two portions of the system we have traditionally found to be problematic.

5.1 Select Primitives

Where possible, use an existing hard crypto specification. Generally such specifications list cryptographic
weak and strong points, as well as the various types of attack resistance. Searches for attacks against a well
known crypto system will also provide a larger list of attack vectors than you might find for
a less-well used cryptosystem.

Often, some of the low level primitives will be mandated by the application. For example, the use of AES-
256 may be required for US government applications, but the manner in which AES-256 must be used may
be unspecified.

In one of our recent applications, AES-256 was specified as the only acceptable block cipher primitive, and
we chose the CCM cipher mode of operation to produce authenticated and encrypted packet data. The
usage of CCM mode was derived from the 802.11 CCM encryption mode, using many of the same fields
and CCM construction constants. This helped minimize the amount of analysis required of the final
cryptosystem, and provided a large body of known attacks to consider in that analysis.

5.2 Be Aware of Startup Constraints

As much as you may wish the data layer to be a stateless, unintelligent piece of software, that may not be
possible. The algorithms and primitives selected may require a complex amount of state to be preserved
across startup events, or even a substantial amount of persistent storage.

One obvious scenario in which this can occur is when using counter-mode primitives. With these types of
primitives, the security of the system is based on the secret key material, but also on a publicly available
counter value. The counter must be unique for every block encrypted with the key; if the same counter is
used twice with any key, the block data becomes almost trivially recoverable.

One way to handle scenarios like this is to force the keying layer to provide counters and other data along
with key material. If this is not possible, the data layer must perform this function.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 10 of 12

6 Keying Layer Design

The keying layer is often more complex and easier to attack than the data layer. Special care must be taken
to understand all aspects of the keying layer, including:

• Key generation using a hard RNG or PRNG
• Authentication and validation of endpoints
• Protected transfer of key material to the data layer
• Protection of configuration and operational changes to the data layer

The following sections provide general design rules and may point out specific problem areas we have
encountered in the past. We will not attempt to detail all portions of the design of the keying layer; this
must be done on a per-application basis.

6.1 Identify Isolated Components and Interfaces

Ideally, the keying layer can be broken up into well-defined, somewhat isolated components with well
understood interfaces and contracts. More commonly than in other software systems, portions of the
keying layer may require specific hardware access or be spread out across multiple devices, each with its
own security boundaries and interfaces. Care must be taken to identify each component, its interface layer,
and its startup/shutdown constraints. Authentication of a component may be required before it can be used
by another component or the system in general; this is often the case in JTRS compliant systems.

6.2 Select Primitives

As the type of key material is often specified by the data layer, selection of primitives often involves
selection of suitable RNG, key generation, signing and authentication algorithms. The RNG is the single
most important primitive, and should be implemented using hardware entropy support if at all possible.
Poor random number generation can compromise utterly (or merely greatly reduce) attack resistance.

Key generation algorithms vary based on the key and algorithm types. RSA keys are 'found' somewhere in
a very large keyspace and then verified by various algorithms; AES keys may simply be a string of purely
random digits. Other algorithms may have very specific constraints on key generation and organization.

Signing and authentication algorithms should provide a level of security suitable for the expected lifetime
of any message authenticated by those algorithms. One rule of thumb is to define the lifetime of any
message or data session to be ten years beyond the anticipated lifetime of the cryptosystem. Whenever
determining the level of security suitable for such a lifetime, we recommend using an exponential curve
such as Moore's law to estimate increases in computational power and attack improvements.

6.3 Select a Key Transfer Mechanism

Key material is useless if it cannot be transferred to the data layer. In some scenarios, such as the 802.11
CCM layer, the keying layer and data layer may be trivially merged and this becomes a non-issue. Military
applications reside at the other end of the spectrum, where at no point are the keying layer and data layer
allowed to be in direct contact with each other; only through intermediate 'key fill' devices may key
material be transferred between the layers.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 11 of 12

Various types of key transfer mechanisms may be used, including:

• public key encryption to set up an authenticated session for key exchange
• public key posting, where keys are public key encrypted and posted publicly for retrieval
• black-key symmetric key wrapping, such as used in US military key fill devices
• IKE or other standardized Internet key exchange mechanisms
• physically secured key transfer

Typically at least some of these transfer mechanisms will be excluded based on either the problem
definition or other design constraints.

6.4 Protect Configuration Data

Often, the configuration of both the keying and data layers is performed by the keying layer, or via keyiing
layer services. Attacks against the configuration (or misconfiguration) of the cryptosystem must not be
overlooked; many previous cryptosystems have been laid bare by configuration or other side channel
attacks which completely bypass well designed and well implemented security systems.

A good rule of thumb is to treat all configuration data as though it were only slightly less important than
key material. All configuration changes and updates should be validated and authenticated as coming from
a proper source; if possible, bad configurations should be locked out or not permitted.

Whitepaper - Cryptographic System Implementation Document #W930_002

VOCAL Technologies, Ltd. Page 12 of 12

7 Conclusion

No short whitepaper can detail all the intricacies of cryptosystem implementation. We have attempted to
describe some of the techniques and problems we have encountered, but this is by no means a complete or
full list. The viewpoint in this paper is also biased toward certain types of designs, and other systems may
have vastly different requirements or constraints.

In the end, most of the points of this paper come down to having a detailed understanding of the system and
each of the critical cryptographic components - in short, doing a proper engineering design and analysis.
All too often this is ignored for traditional software development.

As a final note, it is critically important to find experienced people for this work. Few have a solid
background in cryptography; even fewer have experience with system design and implementation.
Allowing an inexperienced engineer to design a cryptosystem is risky at best.

