ITU - Telecommunication Standardization Sector

Temporary Document HC-073

STUDY GROUP 15

Original: English

Huntsville, Canada, 31 July - 04 August 2000

Question: 4/15

SOURCE¹: VOCAL Technologies Ltd. (http://www.vocal.com)

TITLE: G.gen: Results of the requirements requested in the Coding Ad hoc report (BA-108R1) for the proposed Turbo Codes for ADSL modems by VOCAL Technologies Ltd in BA-020R1.

ABSTRACT

In this paper we describe the results of the evaluation requested in the Coding Ad hoc report (BA-108R1) for the proposed Turbo Codes for ADSL modems by VoCAL Technologies Ltd in BA-020R1

¹ Contact: Juan Alberto Torres, Ph. D. Frederic Hirzel Ernesto Hernandez Garcia Victor Demjanenko, Ph. D. VOCAL Technologies Ltd. 200 John James Audubon Pkwy Buffalo, NY 14228 E: jatorres@vocal.com E: fhirzel@vocal.com E: ernestoh@vocal.com E: victord@vocal.com T: +1 716 688 4675 F: +1 716 639 0713

<u>1.</u> Introduction:

This paper provides the evaluation of VOCAL's proposed Turbo codes for G.dmt and G.lite as decribed in BA-020R1, according to the requirements requested in the Coding Ad Hoc report from the Antwerp meeting (BA-108R1).

This document introduces two differences with B-020R1. One is the inclusion of the 12 bit per tone patterns and the second is the modification of the interleaver proposed, that is the one defined by the 3GPP mobile group and proposed in part by document BA-088R1. Some parameters are included to allow the generation of the interleavers.

2. Description of the method for its implementation

2.1 Capacity Bounds

The minimum E_b/N_0 values to achieve the Shannon bound 64 QAM and 16384 QAM bounds for spectral efficiencies of 4 and 12 bits/s/Hz respectively are as in Table 1 for a BER=10⁻⁵.

Spectral efficiency η [bit/s/Hz]	Shannon bound Eb/No [dB]
4	5.6
12	24.7

Table	1.	Shannon	bounds.
-------	----	---------	---------

The conversion from SNR to E_b/N_0 is performed using the following relation

$$E_b / N_0[dB] = SNR \ [dB] - 10 \ log_{10} \ (\eta) \ [dB]$$
(1)

where η is the number of information bits per symbol.

For a D-dimension modulation the following formulae are used:

$$SNR = \frac{E[/a_{k}^{2}]}{E[/w_{k}^{2}]} = \frac{E[/a_{k}^{2}]}{D\sigma_{N}^{2}} = \frac{E_{av}}{D\sigma_{N}^{2}}$$
(2)

$$SNR = \frac{E_s}{D\frac{N_o}{2}} = \frac{\eta E_b}{D\frac{N_o}{2}}$$
(3)

where σ_N^2 is the noise variance in each of the D dimension and η is the number of information bits per symbol. From the above relations:

$$\sigma_N^2 = E_{av} \left(\frac{2\eta E_b}{N_0} \right)^{\prime} \tag{4}$$

2.2 Coding

The proposed coding scheme is shown in Figure 1. The two systematic recursive codes (SRC) used are identical and are defined in Figure 2. The code is described by the generating polynomials 350 and 230.

2.3 Turbo code internal interleaver.

2.3.1 Option 1: 3GPP interleaver design.

The Turbo code internal interleaver consists of bits-input to a rectangular matrix, intra-row and inter-row permutations of the rectangular matrix, and bits-output from the rectangular matrix with pruning. The bits input to the Turbo code internal interleaver are denoted by $x_1, x_2, x_3, \ldots, x_K$, where *K* is the integer number of the bits and takes one value of $40 \le K \le 32000$. The relation between the bits input to the Turbo code internal interleaver and the bits input to the channel coding is defined by $x_k = o_{irk}$ and $K = K_i$.

- K Number of bits input to Turbo code internal interleaver
- R Number of rows of rectangular matrix
- C Number of columns of rectangular matrix
- p Prime number
- v Primitive root
- s(i) Base sequence for intra-row permutation
- qj Minimum prime integers
- rj Permuted prime integers
- T(j) Inter-row permutation pattern
- Uj(i) Intra-row permutation pattern
- i Index of matrix
- j Index of matrix
- k Index of bit sequence

2.3.1.2 Bits-input to rectangular matrix

The bit sequence input to the Turbo code internal interleaver x_k is written into the rectangular matrix as follows.

(1) Determine the number of rows R of the rectangular matrix such that:

 $R = \begin{cases} 5, \text{ if } (40 \le K \le 159) \\ 10, \text{ if } ((160 \le K \le 200) \text{ or } (481 \le K \le 530)) \\ 20, \text{ if } (K = \text{ any other value}) \end{cases}$

where the rows of rectangular matrix are numbered 0, 1, 2, \dots , R - 1 from top to bottom.

(2) Determine the number of columns C of rectangular matrix such that:

if $(481 \le K \le 530)$ then

p = 53 and C = p.

else

Find minimum prime p such that

 $(p+1) - K/R \ge 0,$

and determine C such that

if $(p - K/R \ge 0)$ then

if $(p - 1 - K/R \ge 0)$ then

C = p - 1.else

C = p.

end if

else

C = p + 1

end if

end if

where the columns of rectangular matrix are numbered 0, 1, 2, ..., C - 1 from left to right.

(3) Write the input bit sequence x_k into the $R \times C$ rectangular matrix row by row starting with bit x_1 in column 0 of row 0:

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$\dots x_C$
$x_{(C+1)}$	$x_{(C+2)}$	$x_{(C+3)}$	$\dots x_{2C}$
		÷	:
$x_{((R-1)C+1)}$	$x_{((R-1)C+2)}$	$x_{((R-1)C+3)}$	$\dots x_{RC}$

2.3.2 Intra-row and inter-row permutations

After the bits-input to the $R \times C$ rectangular matrix, the intra-row and inter-row permutations for the $R \times C$ rectangular matrix are performed by using the following algorithm.

- (1) Select a primitive root *v* from table 2.
- (2) Construct the base sequence s(i) for intra-row permutation as:

 $s(i) = [v \times s(i-1)] \mod p, i = 1, 2, ..., (p-2), and s(0) = 1.$

(3) Let $q_0 = 1$ be the first prime integer in $\{q_j\}$, and select the consecutive minimum prime integers $\{q_j\}$ (j = 1, 2, ..., R - 1) such that:

g.c.d{ q_j , p - 1} = 1, $q_j > 6$, and $q_j > q_{(j-1)}$,

where g.c.d. is greatest common divisor.

(4) Permute $\{q_j\}$ to make $\{r_j\}$ such that

 $r_{T(j)} = q_j, j = 0, 1, ..., R - 1,$

where T(j) (j = 0, 1, 2, ..., R - 1) is the inter-row permutation pattern defined as the one of the following four kind of patterns: Pat_1 , Pat_2 , Pat_3 and Pat_4 depending on the number of input bits *K*.

$$\left\{T(0), T(1), T(2), \dots, T(R-1)\right\} = \begin{cases} Pat_4 & \text{if } (40 \le K \le 159) \\ Pat_3 & \text{if } (160 \le K \le 200) \\ Pat_1 & \text{if } (201 \le K \le 480) \\ Pat_3 & \text{if } (481 \le K \le 530) \\ Pat_1 & \text{if } (531 \le K \le 2280) \\ Pat_2 & \text{if } (2281 \le K \le 2480) \\ Pat_1 & \text{if } (2481 \le K \le 3160) \\ Pat_2 & \text{if } (3161 \le K \le 3210) \\ Pat_1 & \text{if } (3211 \le K) \end{cases}$$

where Pat₁, Pat₂, Pat₃ and Pat₄ have the following patterns respectively.

*Pat*₁: {19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8, 13, 17, 3, 1, 16, 6, 15, 11}

*Pat*₂: {19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13, 17, 15, 3, 1, 6, 11, 8, 10}

*Pat*₃: {9, 8, 7, 6, 5, 4, 3, 2, 1, 0}

*Pat*₄: {4, 3, 2, 1, 0}

(5) Perform the *j*-th (j = 0, 1, 2, ..., R - 1) intra-row permutation as:

if (C = p) then

 $U_i(i) = s([i \times r_i] \mod (p-1)), i = 0, 1, 2, ..., (p-2), and U_i(p-1) = 0,$

where $U_i(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row.

end if

if (C = p + 1) then

$$U_i(i) = s([i \times r_i] \mod(p-1)), i = 0, 1, 2, ..., (p-2), U_i(p-1) = 0, and U_i(p) = p,$$

where $U_i(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row, and

if $(K = C \times R)$ then

Exchange $U_{R-1}(p)$ with $U_{R-1}(0)$.

end

if

end if

if (C = p - 1) then

 $U_j(i) = s([i \times r_j] \mod(p-1)) - 1, \quad i = 0, 1, 2, \dots, (p-2),$

where $U_j(i)$ is the input bit position of *i*-th output after the permutation of *j*-th row. end if

⁽⁶⁾ Perform the inter-row permutation based on the pattern T(j) (j = 0, 1, 2, ..., R - 1), where T(j) is the original row position of the *j*-th permuted row.

v v v р v р v р р р б б б б б б б б б б б

	70.11	• •	1	• 4 1	• • • • •	4
Table 2.	Table (of nrime	<i>n</i> and	associated	nrimitive	root v
I UNIC #.	Lance	JI PIIIIC	p anu	abbutateu	primuve	1000

2.3.3 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are denoted by y'k:

$$\begin{bmatrix} y'_1 & y'_{(R+1)} & y'_{(2R+1)} & \cdots & y'_{((C-1)R+1)} \\ y'_2 & y'_{(R+2)} & y'_{(2R+2)} & \cdots & y'_{((C-1)R+2)} \\ \vdots & \vdots & \vdots & & & \vdots \\ y'_R & y'_{2R} & y'_{3R} & \cdots & y'_{CR} \end{bmatrix}$$

The output of the Turbo code internal interleaver is the bit sequence read out column by column from the intrarow and inter-row permuted $R \times C$ matrix starting with bit y'_1 in row 0 of column 0 and ending with bit y'_{CR} in row R - 1 of column C - 1. The output is pruned by deleting bits that were not present in the input bit sequence, i.e. bits y'_k that corresponds to bits x_k with k > K are removed from the output. The bits output from Turbo code internal interleaver are denoted by $x'_1, x'_2, ..., x'_K$, where x'_1 corresponds to the bit y'_k with smallest index k after pruning, x'_2 to the bit y'_k with second smallest index k after pruning, and so on. The number of bits output from Turbo code internal interleaver is K and the total number of pruned bits is: $R \times C - K$.

2.3.2 Option 2: LRI interleaver design.

The interleaver proposed is the LRI interleaver. The interleaving sequence of LRI is as follows:

A. Determination of the interleaving buffer size.

- M: Number of column in the interleaving buffer (M > 16).
- N: Number of rows in the interleaving buffer (N > 16).
- BL: Interleaving block size ($BL=PxP \ge MxN$).
- P: Minimum prime number that is larger than M.
- v: Minimum primitive root of P.

B. Making basic random set whose length is M

$$C(0) = 1$$
; $C(i+1) = v \times C(i) \mod P$, $i = 0, 1, \dots, P-3$ (5)

C. Making j-th inter-row permutation pattern.

By shifting output of step 2 one by one per inter-row, a Latin square matrix is made. The last (M-1)th column is processed specially in order to avoid low hamming weight phenomenon caused by the forced termination.

$$CLj(i) = C(j + i \mod M-1)$$
; $CLj(M-1) = 0$; $i = 0, 1, \dots, M-2$; $j = 0, 1, \dots, N-1$ (6)

D. Row by row 2D-mapping of di to MxN buffer.

$$d^*j(i) = i + Mxj$$
, $i = 0, 1, ..., M-2$; $j = 0, 1, ..., N-1$ (7)

E. Permutating of 2D-mapped input set di by the permutation pattern made in point 3.

$$d^{**}j(i) = d^{*}(N-j)(CL)N-j(i)), \quad i = 0, 1, \dots, M-1; \quad j = 0, 1, \dots, N-1$$
(8)

F. Reading a permuted input set column by column, and making output set.

$$d'(j+Nxi) = d^{**}j(i), \ i = 0, 1, \dots, M-1; \ j = 0, 1, \dots, N-1$$
(9)

G. Pruning bits.

d' is pruned by deleting the l-bits in order to adjust the output d' to the input block length BL, where the deleted bits are non-existent bits in the input sequence. The pruning number L is defined as L = MxN - BL.

2.4. Coding And Modulation For 4 Bit/S/Hz Spectral Efficiency.

2.4.1 Puncturing

In order to obtain a rate 4/6 code, the puncturing pattern used is shown in Table 3.

Information bit (d)	d ₁	d ₂	d ₃	d_4			
parity bit (p)	p_1	-	-	-			
parity bit (q)	-	-	q ₃	-			
8AM symbol (I)	(d_1, d_2, p_1)						
8AM symbol (Q)	(d_3, d_4, q_3)						
64 QAM symbol (I, Q)		$(I,Q)=(d_1,d_2,$	p_1, d_3, d_4, q_3)				

Table 3. Puncturing and Mapping for Rate 4/6 64 QAM

2.4.2 Modulation

Gray mapping was used in each dimension. Four information bits are required to be sent using a 64 QAM constellation. For a rate 4/6 code and 64 QAM, the noise variance in each dimension is

$$E_{av} = (8(49+25+9+1+25+49+49+9+49+1+25+9+25+1+9+1)) A^{2}/64 = 42 A^{2}$$
(10)

$$\sigma_N^2 = E_{av} \left(\frac{2\eta E_b}{N_0}\right)^{-1} = 42 A^2 \left(\frac{2 x 4 x E_b}{N_0}\right)^{-1} = 5.25 A^2 \left(\frac{E_b}{N_0}\right)^{-1}$$
(11)

The puncturing and mapping scheme is shown in Table 6 for 4 consecutive information bits that are encoded into 6 coded bits, therefore one 64 QAM symbol. The turbo encoder with the puncturing presented in Table 6 is a rate 4/6 turbo code which in conjunction with 64 QAM gives a spectral efficiency of 4 bits/s/Hz. Considering two independent Gaussian noises with identical variance σ^2_N , the LLR can be determined independently for each I and Q. It is assumed that at time k u_1^k , u_2^k and u_3^k modulate the I component and u_4^k , u_5^k and u_6^k modulate the Q component of the 64 QAM scheme. At the receiver, the I and Q signals are treated independently in order to take advantage of the simpler formulae for the LLR values.

2.4.3 Bit Probabilities

The 8AM symbol is defined as $u^k = (u_1^k, u_2^k, u_3^k)$, where u_1^k is the most significant bit and u_3^k is the least significant bit. The following set can be defined.

- 1. bit-1-is-1 = { A_4, A_5, A_6, A_7 }
- 2. bit-2-is-1 = { A_0 , A_1 , A_6 , A_7 }
- 3. bit-3-is-1 = { A_1 , A_2 , A_5 , A_6 }

From each received symbol, the bit probabilities are computed as follows:

$$LLR(u_n^k) = \log \left(\frac{\sum_{i=1}^{4} \exp[-\frac{1}{2\sigma_N^2} (I^k - a_{l,i,n}^k)^2]}{\sum_{i=1}^{4} \exp[-\frac{1}{2\sigma_N^2} (I^k - a_{0,i,n}^k)^2]} \right)$$
(12)

For I dimension. An identical computation effort is required for the Q dimension, the I^k being replaced with the Q^k demodulated value in order to evaluate $LLR(u_4^{k})$, $LLR(u_5^{k})$ and $LLR(u_6^{k})$.

2.4.4 Simulation Results

Figure 3 shows the simulation results for 10,400 information bits with interleaver option 1. A BER of 10^{-7} can be achieved after 8 iterations at $E_b/N_0 = 8.3$ dB.

BER for Rate 4/6 64QAM N=10400 bits AWGN Channel

Figure 3.

2.5 Coding And Modulation For 12 Bit/S/Hz Spectral Efficiency.

This section investigated a rate 12/14 coding scheme with 16384 QAM.

2.5.1 Puncturing

In order to obtain a rate 12/14 code, the puncturing pattern used is shown in Table 4.

Information bit (d)	d ₁	d_2	d ₃	d_4	d ₅	d_6	d ₇	d_8	d9	d ₁₀	d ₁₁	d ₁₂
parity bit (p)	p ₁	p ₁						-	I	-	I	-
parity bit (q)	-	-	I	-	-	1	\mathbf{q}_7	-	I	-	I	-
128AM symbol (I)		$(d_1, d_2, d_3, d_4 d_5, d_6, p_1)$										
128AM symbol (Q)	$(d_7, d_8, d_9, d_{10}, d_{11}, d_{12}, q_7)$											
16384 QAM symbol (I, Q)			(d ₁ ,	d_2 , d_3	$d_4 d_5, d_6$	5, p ₁ , 0	$d_7, d_8,$	$d_9, d_{10},$	d ₁₁ , d ₁₂	$(2, q_7)$		

Table 4. Puncturing and Mapping for Rate 12/14 16384 QAM

2.5.2 Modulation

For a 16384 QAM constellation with points at -127A, -125A, -123A, -121A, -119A, -117A, -115A, -113A, -111A, -109A, -107A, -105A, -103A, -101A, -99A, -97A, -95A, -93A, -91A, -89A, -87A, -85A, -83A, -81A, -79A, -77A, -75A, -73A, -71A, -69A, -67A, -65A, -63A, -61A, -59A, -57A, -55A, -53A, -51A, -49A, -47A, -45A, -43A, -41A, -39A, -37A, -35A, -33A, -31A, -29A, -27A, -25A, -23A, -21A, -19A, -17A, -15A, -13A, -11A, -9A, -7A, -5A, -3A, -A, A, 3A, 5A, 7A, 9A, 11A, 13A, 15A, 17A, 19A, 21A, 23A, 25A, 27A, 29A, 31A, 33A, 35A, 37A, 39A, 41A, 43A, 45A, 47A, 49A, 51A, 53A, 55A, 57A, 59A, 61A, 63A, 65A, 67A, 69A, 71A, 73A, 75A, 77A, 79A, 81A, 83A, 95A, 87A, 89A, 91A, 93A, 95A, 97A, 99A, 101A, 103A, 105A, 107A, 109A, 111A, 113A, 115A, 117A, 119A, 121A, 123A, 125A, 127A. E_{av} is: $E_{av} = 5461 A^2$ (13)

It is assumed that at time k the symbol $\mathbf{u}^{k} = (\mathbf{u}_{1}^{k}, \mathbf{u}_{2}^{k}, \mathbf{u}_{3}^{k}, \mathbf{u}_{4}^{k}, \mathbf{u}_{5}^{k}, \mathbf{u}_{6}^{k}, \mathbf{u}_{7}^{k}, \mathbf{u}_{8}^{k}, \mathbf{u}_{9}^{k}, \mathbf{u}_{10}^{k}, \mathbf{u}_{11}^{k}, \mathbf{u}_{12}^{k}, \mathbf{u}_{13}^{k}, \mathbf{u}_{14}^{k})$ is sent though the channel. It is assumed that at time k the symbol $\mathbf{u}_{1}^{k}, \mathbf{u}_{2}^{k}, \mathbf{u}_{3}^{k}, \mathbf{u}_{4}^{k}, \mathbf{u}_{5}^{k}, \mathbf{u}_{6}^{k}$ and \mathbf{u}_{7}^{k} modulate the I component and $\mathbf{u}_{8}^{k}, \mathbf{u}_{9}^{k}, \mathbf{u}_{10}^{k}, \mathbf{u}_{11}^{k}, \mathbf{u}_{12}^{k}, \mathbf{u}_{13}^{k}$ and \mathbf{u}_{14}^{k} modulate the Q component of a 16384 QAM scheme.

For a rate 12/14 code and 16384 QAM, the noise variance is:

$$\sigma_N^2 = E_{av} \left(\frac{2\eta E_b}{N_0} \right)^{-1} = 5461 A^2 \left(\frac{2 x 6 x E_b}{N_0} \right)^{-1} = 455.08 A^2 \left(\frac{E_b}{N_0} \right)^{-1}$$
(14)

In order to study the performance of this scheme, a rate 6/7 turbo code and a 128AM is used. The 16384 QAM scheme will achieve a similar performance in terms of bit error rate (BER) at twice the spectral efficiency, assuming an ideal demodulator. The puncturing and mapping scheme shown in Table 8 is for 12 consecutive information bits that are coded into 14 encoded bits, therefore, one 16384 QAM symbol. The turbo encoder is a rate 12/14 turbo code, which in conjunction with 16384 QAM, gives a spectral efficiency of 12 bits/s/Hz.

2.5.3 Bit Probabilities

The 128AM symbol is defined as $u^{k} = (u_{1}^{k}, u_{2}^{k}, u_{3}^{k}, u_{4}^{k}, u_{5}^{k}, u_{6}^{k}, u_{7}^{k})$, where u_{1}^{k} is the most significant bit and u_{7}^{k} is the least significant bit. The following set can be defined.

1.	$bit-1-is-1 = \{A_{64}, A_{65}, A_{66}, A_{67}, A_{68}, A_{69}, A_{70}, A_{71}, A_{72}, A_{73}, A_{74}, A_{75}, A_{76}, A_{77}, A_{78}, A_{79}\}$
	${ m A}_{80}, { m A}_{81}, { m A}_{82}, { m A}_{83}, { m A}_{84}, { m A}_{85}, { m A}_{86}, { m A}_{87}, { m A}_{88}, { m A}_{89}, { m A}_{90}, { m A}_{91}, { m A}_{92}, { m A}_{93}, { m A}_{94}, { m A}_{95}$
	A_{96} , A_{97} , A_{98} , A_{99} , A_{100} , A_{101} , A_{102} , A_{103} , A_{104} , A_{105} , A_{106} , A_{107} , A_{109} , A_{109} , A_{110} , A_{111}
	$A_{112}, A_{113}, A_{114}, A_{115}, A_{116}, A_{117}, A_{118}, A_{119}, A_{120}, A_{121}, A_{122}, A_{123}, A_{124}, A_{125}, A_{126}, A_{127}$
2.	$bit-2-is-1 = \{A_{32}, A_{33}, A_{34}, A_{35}, A_{36}, A_{37}, A_{38}, A_{39}, A_{40}, A_{41}, A_{42}, A_{43}, A_{44}, A_{45}, A_{46}, A_{47}, A_{47}, A_{48}, A_{48}$
	A48, A49, A50, A51, A52, A53, A54, A55, A56, A57, A58, A59, A60, A61, A62, A63
	A_{64}, A_{65}, A_{66} , A_{67} , A_{68} , A_{69} , A_{70} , A_{71} , A_{72} , A_{73} , A_{74} , A_{75} , A_{76} , A_{77} , A_{78} , A_{79}
	A_{80} , A_{81} , A_{82} , A_{83} , A_{84} , A_{85} , A_{86} , A_{87} , A_{88} , A_{89} , A_{90} , A_{91} , A_{92} , A_{93} , A_{94} , A_{95} }
3.	$bit-3-is-1 = \{A_{16}, A_{17}, A_{18}, A_{19}, A_{20}, A_{21}, A_{22}, A_{23}, A_{24}, A_{25}, A_{26}, A_{27}, A_{28}, A_{29}, A_{30}, A_{31}\}$
	A ₃₂ ,A ₃₃ , A ₃₄ , A ₃₅ , A ₃₆ , A ₃₇ , A ₃₈ , A ₃₉ , A ₄₀ ,A ₄₁ , A ₄₂ , A ₄₃ , A ₄₄ , A ₄₅ , A ₄₆ , A ₄₇
	A ₈₀ ,A ₈₁ , A ₈₂ , A ₈₃ , A ₈₄ , A ₈₅ , A ₈₆ , A ₈₇ , A ₈₈ ,A ₈₉ , A ₉₀ , A ₉₁ , A ₉₂ , A ₉₃ , A ₉₄ , A ₉₅
	$A_{96}, A_{97}, A_{98}, A_{99}, A_{100}, A_{101}, A_{102}, A_{103}, A_{104}, A_{105}, A_{106}, A_{107}, A_{108}, A_{109}, A_{110}, A_{111}$
4.	$bit-4-is-1 = \{A_8, A_9, A_{10}, A_{11}, A_{12}, A_{13}, A_{14}, A_{15}, A_{16}, A_{17}, A_{18}, A_{19}, A_{20}, A_{21}, A_{22}, A_{23}, A_{23}, A_{24}, A_{25}, A_{24}, A_{24}, A_{25}, A_{24}, A_{25}, A_{2$
	$A_{40}, A_{41}, A_{42}, A_{43}, A_{44}, A_{45}, A_{46}, A_{47}, A_{48}, A_{49}, A_{50}, A_{51}, A_{52}, A_{53}, A_{54}, A_{55},$
	A72, A73, A74, A75, A76, A77, A78, A79, A80, A81, A82, A83, A84, A85, A86, A87,
	$A_{104}, A_{105}, A_{106}, A_{107}, A_{108}, A_{109}, A_{110}, A_{111}, A_{112}, A_{113}, A_{114}, A_{115}, A_{116}, A_{117}, A_{118}, A_{119}, \}$
5.	$bit-5-is-1 = \{A_4, A_5, A_6, A_7, A_8, A_9, A_{10}, A_{11}A_{20}, A_{21}, A_{22}, A_{23}, A_{24}, A_{25}, A_{26}, A_{27}\}$
	A ₃₆ , A ₃₇ , A ₃₈ , A ₃₉ , A ₄₀ ,A ₄₁ , A ₄₂ , A ₄₃ , A ₅₂ , A ₅₃ , A ₅₄ , A ₅₅ , A ₅₆ ,A ₅₇ , A ₅₈ , A ₅₉
	$A_{68}, A_{69}, A_{70}, A_{71}, A_{72}, A_{73}, A_{74}, A_{75}, A_{84}, A_{85}, A_{86}, A_{87}, A_{88}, A_{89}, A_{90}, A_{91},$

 $A_{100}, A_{101}, A_{102}, A_{103}, A_{104}, A_{105}, A_{106}, A_{107}A_{116}, A_{117}, A_{118}, A_{119}, A_{120}, A_{121}, A_{122}, A_{123}, \}$

From each received symbol, R^k , the bit probabilities are computed as follows:

$$LLR(u_n^k) = \log\left(\frac{\sum_{A_i \in bit-n-is-l} \exp\left(-\frac{l}{2\sigma_N^2} \|R^k - A_i\|\right)}{\sum_{A_j \in bit-n-is-0} \exp\left(-\frac{l}{2\sigma_N^2} \|R^k - A_j\|\right)}\right)$$
(17)

2.5.4 Simulation Results

Figure 4 shows the simulation results for 31200 information bits with interleaver option 1. A BER of 10^{-7} can be achieved after 8 iterations at $E_b/N_0 = 28.25$ dB.

BER for Rate 12/14 16384QAM N=31200 bits AWGN Channel

Figure 4

3. Results.

3.1 Without Reed-Solomon

3.1.1 Net Coding Gain.

Bit/Tone	Tones	Interleaver Size	# of DMT symbols	Latency (Tx+Rx) ms <	10 ^{- 3}	10 ^{- 7}	10 ⁻⁹ extrap.
		5,200	13	10.0	4.60	7.42	7.94
	100	800	2	1.5	3.70	4.92	4.84
4		400	1	0.7	3.30	3.62	3.84
	200	10,400	13	10.0	4.60	7.52	8.14
		1,600	2	1.5	4.10	6.42	6.64
		800	1	0.7	3.70	4.92	4.84
		15,600	13	10.0	4.10	5.91	6.03
12	100	2,400	2	1.5	3.60	5.51	5.63
		1,200	1	0.7	3.00	3.91	4.03
12		31,200	13	10.0	4.10	6.81	7.53
	200	4,800	2	1.5	3.60	5.91	6.43
		2,400	1	0.7	3.60	5.51	5.63

Table 5. Net Coding Gain

3.1.2 Errors due to Impulse noise.

The impulse noise is defined as 2 consecutive DMT symbols with an increase AWGN respect to the reference noise level of a carrier-to-noise ratio of 21.5 dB (for 4 bit/tone) and 45.5 dB (for 12 bit/tone).

Bit/ Tone	Tones	Interleaver Size	RL + 2.5 dB	RL + 5 dB	RL + 7.5 dB	RL + 10 dB	RL + 12.5 dB	RL + 15 dB	RL + 17.5 dB	RL + 20 dB
		5,200	0	0	0	0	0	0	0	4
	100	800	0	0	39	65	104	140	188	243
4		400	0	0	10	50	89	127	161	214
4		10,400	0	0	0	0	0	0	0	7
	200	1,600	0	0	0	127	189	267	363	448
		800	0	0	40	116	187	252	346	440
		15,600	0	0	0	0	10	58	130	207
	100	2,400	0	0	40	78	121	171	216	295
10		1,200	0	0	43	98	129	188	255	329
12		31,200	0	0	0	0	90	175	313	482
	200	4,800	0	0	75	177	254	341	462	608
		2,400	0	0	80	166	244	345	457	598

Table 6. Error due to Impulse Noise

3.1.3 Error Statistics.

3.1.3.1 For AWGN

Bit/Tone	Tones	Interleaver Size	1 consec. error	2 consec errors	3 consec errors	4 consec errors	5 consec errors	6 consec errors
4		5,200	87.30%	10.81%	1.47%	0.29%	0.03%	0.10%
	100	800	94.35%	5.64%	0.00%	0.00%	0.00%	0.00%
		400	90.28%	9.72%	0.01%	0.00%	0.00%	0.00%
	200	10,400	89.90%	8.63%	1.21%	0.20%	0.06%	0.00%
		1,600	97.94%	2.06%	0.00%	0.00%	0.00%	0.00%
		800	90.28%	9.72%	0.01%	0.00%	0.00%	0.00%
12		15,600	99.79%	0.21%	0.00%	0.00%	0.00%	0.00%
	100	2,400	98.72%	1.28%	0.00%	0.00%	0.00%	0.00%
		1,200	97.94%	2.06%	0.00%	0.00%	0.00%	0.00%
	200	31,200	99.86%	0.14%	0.00%	0.00%	0.00%	0.00%
		4,800	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%
		2,400	98.72%	1.28%	0.00%	0.00%	0.00%	0.00%

Table 7. Error Statistics for AWGN

3.1.3.2 Impulse Noise

ruble of Enor Statistics for impulse noise	Table 8.	Error	Statistics	for	Impul	se noise
--	----------	-------	-------------------	-----	-------	----------

Bit/Tone	Tones	Interleaver Size	1 consec. error	2 consec errors	3 consec errors	4 consec errors	5 consec errors	6 consec errors
4		5,200	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	100	800	75.97%	18.99%	18.99%	3.36%	0.84%	0.84%
		400	79.89%	17.24%	1.72%	1.15%	0.00%	0.00%
	200	10,400	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%
		1,600	80.24%	13.05%	4.47%	1.68%	0.47%	0.00%
		800	79.03%	17.50%	2.46%	0.46%	0.46%	0.00%
12		15,600	95.19%	4.81%	0.00%	0.00%	0.00%	0.00%
	100	2,400	94.61%	5.28%	0.11%	0.00%	0.00%	0.00%
		1,200	93.63%	5.95%	93.63%	0.00%	0.00%	0.00%
		31,200	93.25%	6.65%	0.00%	0.00%	0.00%	0.00%
	200	4,800	94.89%	4.95%	0.16%	0.00%	0.00%	0.00%
		2,400	94.59%	5.36%	0.06%	0.00%	0.00%	0.00%

It is interesting that for the large turbo decoders the impulse errors still tends to stay within the 2 DMT symbols. This implies a moderately large turbo coder of 5 ms follow by a convolutional interleaver/Reed Solomon of 10 ms should create both robust performance and good impulse resistance.

3.2 With Reed-Solomon

3.2.1 Net Coding Gain.

Bit/Tone	Tones	Interleaver Size	# of DMT symbols	Latency (Tx+Rx) ms <	10 ^{- 3}	10 ^{- 7}	10 ⁻⁹ extrap.
		5,200	13	10.0	5.00	8.62	9.64
	100	800	2	1.5	3.50	7.12	8.44
4		400	1	0.7	3.50	6.42	7.44
	200	10,400	13	10.0	5.30	8.82	9.84
		1,600	2	1.5	4.60	7.72	8.74
		800	1	0.7	3.50	7.12	8.44
		15,600	13	10.0	4.40	7.71	8.53
	100	2,400	2	1.5	4.60	7.41	8.33
12		1,200	1	0.7	4.10	6.81	7.63
		31,200	13	10.0	4.40	7.71	8.53
	200	4,800	2	1.5	4.40	7.21	8.13
		2,400	1	0.7	4.60	7.41	8.33

Table 9. Coding Gain

Table 10. Net Coding Gain

Bit/Tone	Tones	Interleaver Size	# of DMT symbols	Latency (Tx+Rx) ms <	10 ^{- 3}	10 ^{- 7}	10 ⁻⁹ extrap.
	100	5,200	13	10.0	3.42	7.04	8.06
		800	2	1.5	1.78	5.40	6.72
4		400	1	0.7	1.94	4.86	5.88
-	200	10,400	13	10.0	3.72	7.24	8.26
		1,600	2	1.5	2.88	6.00	7.02
		800	1	0.7	1.94	5.56	6.88
12		15,600	13	10.0	0.20	3.51	4.33
	100	2,400	2	1.5	0.02	2.83	3.75
		1,200	1	0.7	-0.24	2.47	3.29
	200	31,200	13	10.0	1.06	4.37	5.19
		4,800	2	1.5	0.76	3.57	4.49
		2,400	1	0.7	0.26	3.07	3.99

3.2.2 Errors due to Impulse noise.

The impulse noise is defined as 2 consecutive DMT symbols with an increase AWGN respect to the reference noise level of a carrier-to-noise ratio of 21.5 dB (for 4 bit/tone) and 45.5 dB (for 12 bit/tone).

Table 11. Error due to Impulse Noise

Bit/ Tone	Tones	Interleaver Size	RL + 2.5 dB	RL + 5 dB	RL + 7.5 dB	RL + 10 dB	RL + 12.5 dB	RL + 15 dB	RL + 17.5 dB	RL + 20 dB
		5,200	0	0	0	0	0	0	0	0
	100	800	0	0	0	0	0	0	0	0
4		400	0	0	0	0	0	0	0	0
4		10,400	0	0	0	0	0	0	0	0
	200	1,600	0	0	0	0	0	0	0	0
		800	0	0	0	0	0	0	0	0
		15,600	0	0	0	0	10	58	130	207
	100	2,400	0	0	0	0	0	0	0	0
10		1,200	0	0	0	0	0	0	0	0
12		31,200	0	0	0	0	90	175	313	482
	200	4,800	0	0	0	0	0	10	11	65
		2,400	0	0	0	0	9	10	24	115

3.2.3 Error Statistics.

The statistics results obtained are practically the same than for the non Reed-Solomon case

3.3 Complexity.

Table 12. Complexity of the Receiver and transmitter per Tone for a log-MAP decoder

Bit/Tone	Tones	Interleaver Size	Estimates	Multiplies	Add/sub	RAM	lookups	# Compa.	Precision Fixed-Point
		5,200	6	6	7208	374,400	1536	2500	16 bits
4	100	800	6	6	7208	57,600	1536	2500	16 bits
		400	6	6	7208	28,800	1536	2500	16 bits
		10,400	6	6	7208	748,800	1536	2500	16 bits
	200	1,600	6	6	7208	115,200	1536	2500	16 bits
		800	6	6	7208	57,600	1536	2500	16 bits
		15,600	14	14	21624	1,123,200	4608	7500	16 bits
	100	2,400	14	14	21624	172,800	4608	7500	16 bits
12		1,200	14	14	21624	86,400	4608	7500	16 bits
		31,200	14	14	21624	2,246,400	4608	7500	16 bits
	200	4,800	14	14	21624	345,600	4608	7500	16 bits
		2,400	14	14	21624	172,800	4608	7500	16 bits

Bit/Tone	Tones	Interleaver Size	Estimates	Multiplies	Add/sub	RAM	lookups	# Compa.	Precision Fixed-Point
	100	5,200	6	6	2088	374,400	0	1604	16 bits
4		800	6	6	2088	57,600	0	1604	16 bits
		400	6	6	2088	28,800	0	1604	16 bits
		10,400	6	6	2088	748,800	0	1604	16 bits
	200	1,600	6	6	2088	115,200	0	1604	16 bits
		800	6	6	2088	57,600	0	1604	16 bits
	100	15,600	14	14	6264	1,123,200	0	4812	16 bits
		2,400	14	14	6264	172,800	0	4812	16 bits
12		1,200	14	14	6264	86,400	0	4812	16 bits
	200	31,200	14	14	6264	2,246,400	0	4812	16 bits
		4,800	14	14	6264	345,600	0	4812	16 bits
		2,400	14	14	6264	172,800	0	4812	16 bits

Table 13. Complexity of the Receiver and transmitter per Tone for a MAX-log-MAP decoder